
XXV Conferencia Latinoamericana de Informática ---~------~-------- Asunción-Paraguay

Using Continuous Domain Logic to Solve
Interval Constraint Satisfaction Problems

Benjamín R. Callejas Bedregal and Benedito Melo Acióly
Universidade Federal do Rio Grande do Norte- UFRN

Departamento de Informática e Matemática Aplicada - DIMAp
Laboratório de Lógica e Inteligencia Computacional- LabLIC

Campus Universitário- Lagoa Nova
CEP: 59.072-970, Natal-RN, Brasil.

Fone: (55)(84)215-3814 Fax: (55)(84)215-3781
bedregal@dimap.ufrn.br and bma@dimap.ufrn.br

Abst:ract

Domain Logic (algebraic) was introduzed by Abramsky [Abr91) in order to study
the logical aspects (a proof system) of domains as used in the denotational semantics
of programming languages. Thus, we present denotational semantics as a program
logic. In (BA95] the Abramsky approach to domain logic was extended, interpreting
types as continuous domains instead of algebraic domains.

In this work we extend the continuous domain logic incorporing the interval data
type as primitive type and adding variables, interval arithmetic, axioms and rules
to the interval data type. Its allows us, for exarnple, to solve Interval Constraint
Satisfaction Problems as deduction in our logic.

Keywords: Domain Theory, Reals Interval, Domain Logic, Interval Constraint Satisfac­
tion Problems.

661

XXV Coiiferencia Lati11oamericana de biformática ------------------ Asunción-Paraguay

1 Introduction

The (algebraic) domain logic was introduzed by Abramsky (Abr91] in order to study
the logical aspects (a proof system) of domains as used in the denotational semantics
of programming lánguages. However, algebraic domains does not support a natural and
topologically consistent interpretation of the real interval data type. Nevertheless, con-·
tinuous domains have a desirable interpretation for this data type.

Analogously to the work of Scott (Sco82] to represent concretely algebraic domains,
Hoofman in (Hoo93] introduzed the alternative description of continuous information sys­
tems, CIS in short, to continuous domains. This representation makes explicit the idea of
information, in the sense that each element of a domain is seen as a collection of informa­
tions that it "satisfies". Even though both notions are equivalent, categorically speaking,
informatíon systems allow us to capture the logical aspects of domains, in the sense that
properties of domains can be derived from assumptions about the entailment between
propositions expressing properties of computations. Thus, for example, the continuous
domain of real interval is represented as a continuous information system whose basic
informations are rational intervals.

In (BA95] the Abramsky approach to domain logic (Abr91] was extended interpreting
types as continuous information systems instead of algebraic domains.

In this work, we will extend the typed languages introducing a distinguished type for
representing the interval data type as well as formation rules for the interval arithmetic.
We extend the proof system with news axioms and rules for interval deductions based on
the interval arithmetic. This extended domain logic is called here interval domain logic.
A goal of this extension is to allow interval deductions which can be used, for ~xample, to
solve sorne interval contraint satisfaction problems, ICSP in short. An approchs to solving
ICSP's is the (Local) Tolerance Propagation (Mac92]. Using the agenda defined by this
method we find, via deductions in the proof system, the minimal consistent subinterval
which can have the variables satisfying the equations of the interval constraint system.
This method used to find solutions of ICSP's can be implement as an automatic theorem
pro o f.

2 Continuous domains

Several mathematical structures have been widely employs as models for denotational
semantics of programming language since the seminal work of Scott and Strachey. One of
them is the continuous domains, i.e. posets such that each chain and each consistent set
has a supremum, with a least element and a countable base, i.e. basically, a continuous
lattice (Sco72] minus, possibly, the top element (Aci96]. The morphisms between contin­
uous domains, called continuous functions, are the monotonic functions w.r.t. the arder
associated to domains preserving supremum of chains. Continuous domain allows us to
develop a theory of interval arithmetic and numerical analysis (Aci91]. This theory has
the advantage of being constructive and computational,' besides of unifying the theory of

662

XXV Conferencia Latinoamericana de Informática----------------- Asunción-Paraguay

programming languages semantics a;nd computational mathematics (numerical analysis).
It provides usa logic (Scott logic) to reason about programs in nuinerical analysis.

Let D = (D, ::;) be a partially ordered set (poset). A set 4 ~ D is called directed
if e~ch finite subset has an upper bound, or equivalently, Va, b ·E .6. 3c E .6. such that
a ::; e and b ::; c. A poset D is· complete (for·short cpo) if each directed set .6. has a 1east
upper bound (denoted by U .6.) and has a bottom element. We say that a is way below
b (denotecl by a ~ b) if for every directed set .Ó. SUCh that b ::; U .Ó. then a ::; X for sorne
X E .6..

We let ix = {y E D : y ~ x P. A cpo D is called continuous if, for a:U x E D, the set
ix is directed and x =U ix. A continuous cpo D such that to each consistent set (a set
has an upper bound in D) has a supremum in D is called contiriuous doma in.

The interval data type, denoted here by T, will be interpreted by the continuous
domain R = (ll(IR), ~' [-oo, +oo]) where ll(IR) = {[r, s] : r, sE IR and r ::; s} U {[-oo, +oo]}
and [r, s] ~ [t, u] iff r ::; t and u < s. Notice that [a, b] ~ [e, d] if, and only if, a < e and
d> b. .

A topology on a set X is a collection of subsets of X that is closed under finite inter­
section and arbitrary union. A set X together with a topology Ton X is a topological
space denoted by (X, 7). The elements of í are the open sets of the space. Notice that
the emptyset CmmU 0fancrx itself (n 0) are open in any topology over X . -m

Now let (X,~) be a continuous domain. O ~X is said to be Scott open if whenever
x E O and x ~y then y E O and if S~ X is directed and Sup S E O then there exists
s E S such that s E O. The set of Scott open set (the Scott topology) of a continuous
domain D is denoted by ns (D).

3 Continuous information systems

Continuous domains have a more concrete and logic representation as continuous infor­
mation systems, CIS in short. A CIS can be viewed as prescription or program saying
how to build a domain.

Definition 3.1 [Hoo93] A continuous information system is a triple I = (J, Con, 1-),
where I is a non empty countable information set, Con is a non empty subset oJPfin(I)
(finite parts of I), named consistency predicate, and 1- is a subset of Con x I, named
entailment relation such that

I If X E Con and Y ~ X then Y E Con

II If a E I then, {a} E Con

III If X 1- a then, X U {a} E Con

IV If Y ~ X, X E Con and Y 1- a then, X 1- a

.1 Analogously, we let tx = {y E D : x « y}

------------------------~-- 663

XXV Conferencia Latinoamericana de Informática~~-~--~---------- Asunción-Paraguay

V If X 1- Y2 and Y 1- a then, X 1- a

VI If X 1- a then 3Y E.Con such that X 1- Y and Yl- a

A CIS informs on the elements of a domain which may be identified with the set of
information in the system which are satisfied by these elements.

Definition 3.2 [Hoo93] Let I = (J, Con, 1-) be a GIS. The set x ~ I is an element of
I if the the following conditions are satisfies:

1. If X ~fin x3 then, X E Con

2. If X ~ x and X 1- a then, a E x.

3. lf a E x then ::JY ~fin x such that Y 1- a.

The set of elements of a CIS I = (I, Con, 1-) is denoted by III and the poset (III, ~)
is called domain of elements of the CIS I.

Theorem 3.3 [Hoo93] Let I = (I, Con, 1-) be a GIS. Then (1 I 1, ~) is a continuous
domain. 11

There are technical advantages to working with CIS rather than directly with con­
tinuous domains. First CIS uses the set theory languages and second the properties of
domains can be derived rather than postulated.

We are mainly interested in continuous information systern, which are appropriated
for representing the real nurnber data type. Each rational interval is interpreted as an
information about the real numbers that it properly contains. A CIS for the real numbers
is the triple

In= (rr(Q>), Conn, 1-n) where

l. rr(Q>) ={[a, b] : a, bE Q> anda:::; b} U {[-oo, +oo]}

2. X E Conn iff X ~fin rr(Q>) and max1(X) < minr(X)

3. X 1-n [a, b] iff a< max¡(X) e minr(X) < b.

with max1(X) = max{ a : ::lb E Q> U { +oo }, [a, b] E X}, minr(X) = min{b : ::la E
Q> U { ~oo }, [a, b] E X}. The domain of element of the CIS In is "isomorphic" to the
continuous domain (rr(JR), ~), where rr(JR) = {[r, s]: r, sE lR and r:::; s}U{[-oo, +oo]} and
[r, s] e [t, u] if, and only if, r :::; t and u :::; s [Bed96]. In the follows we will incorporate the
interval arithmetics operators in the basic inforrnation, i.e. we will consider informations
of teh kind [3, 4] + [2, 3] as an information to real number 1r +e, for example. Its extension

2The notation X 1- Y is a shorthand f<;>r Va E Y, X 1- a.
3 X e; fin Y is an abreviation for "X e; Y and X is finite".

664

)O(V Conferencia Latinoamericana de Informática----------------- Asunción~ Paraguay

will be useful to obtain a logical ~ystem of partial information on the real data type,
which allows us to have interessant deduction in the interval theory involving the interval
arithmetics.

l. In,A is obtain recursively from the follows formation rules

[a, b] E II(lQ)
[a, b] E ln,A

1, J E In,A

(I + J) E~ln,A

2. X E Conn,A iff eval(X) E Conn

1,1 E ln,A

(I- J) E ln,A

where eval : In,A--+ II(lQ) is a function defined by

eval([a, b]) = [a, b]

eval((I + J)) = eval(I) + eval(J)

eval ((I -=-f)) = eval (I) - eval (J)

eval(I · J)) = eval(I) · eval(J)

eval((I l J)) _ { eval(I)Ieval(J)
- t

1,1 E lnA
' ,

(! · J) E ln,A

ifO ~ J
otherwise

l,J E ln,A

(I / J) E l'R,A

The operator +, -, · and 1 are the usual interval arithmetic operators [Moo66].

3. X f--n,A I iff eval(X) f--n eval(I).

4 Typed language and formation rules

In this section, we shall introduce a metalanguage for denotational semantics of programs,
whose language of the typed expressions has the following syntax:

a ::= 1 1 l' 1 a x r 1 a--+ r 1 u ffi r 1 &t 1 uH 1 u 8 1 rec.t.(1

where t is a variable type, and (1 and r are any types, the type 1 consist of a unique
elernent and Y is the interval type. The product (x), function space (--+), collapsed sum
(EB), lifting (t), the Hoare powerdomain (H) and Smyth powerdomain (8) are the usual
constructora of domains [Sco82]. To each type a we associate a CIS I(a) = (Iu, Conu, f-u)·
For example, I(T) = In,A.

By using the above metalanguage we can provide a denotational sema:ntics for a large
class of programming languages. Each programmi:ng language L is specified by a typed
expression a and each program in it is denoted by an element of I(a). We are not
concerned in how we select a typed expression for a particular programming la:nguage.

XXV Conferencia Latinoamericana de lnfornuí.tica -----------------Asunción-Paraguay

For each type a we introduce a propositional language .C,n the language of finitely
observable informations, whose atomical formulae are Iu and the canonical information t
(true) and f (false).

l. If a E Iu, then a E Cu.

2. If a, b E .Cu, then a 1\ b E Cu.

Clearly, each language Cu can be extend with a countable set of variables X, denoted
by Cu(X).

Formation Rule

(t, f) t:"(1 r:a (/\) cp_¡ '!P : a (V) 'P_1 2 'P_2 2 • • • : a
r.p 1\ ,P : a V 'Pi : a

(-+) r=T (0, 'lj; :a-+ T
cp_:a Y!_:T

({r.p},'I/J): a-+ T (x) <p_:a Y!_:T
(r.p,'I/J): a X T (rec) r.p : a[rec X.a LX]

r.p : rec X.a

(o_¡_) p_:a
(2,r.p):a_¡_ (l,l):a_¡_ (D) p_:a

Dr.p : a8
(O) p_:a

Or.p:aH

5 Proof system

In order to give axioms in the program logic, we will introduce a relations for every type
a. By r.p ~· 'lj;, we mean that the information r.p derives the information '1/J. So, ~ is an
entailmen~ relation or a strong order, also know as "way-below" relation, in an inverse
sense.

For notational simplicity, we will eliminate subscripts if no confusion arise and we will
use binary disjunction instead of the arbitrary disjunctions. We will introduce for each
type the relation ~ on their informations, which indicates the logic derivation.

Logical Axioms and Logical Rules

(t) (f) (1->>)
X f- b

r.p~t f >> r.p 1\X~b

(I~) ['1/J ~el>] (V->>) P..l >> Y!.. 'P_2 ~ '1/J
'PI V 'P2 ~ 'ífj

(/\- ~) cp_~Y!_ cp_~p_
r.p~'ífj/\(jj

r.p~cp

r.p>'lj;

----------------------------- 666

XXV Conferencia Latinoamericana de Informática---------------- Asunción-Paraguay

(Transl) <p ~ P ~ ~ P (Trans2)
<p~

<p > P P >> P (Trans3)
<p~qJ

(Inter)
<p~'I/J

<p >> <P
for sorne <P >> '1/J (I=)

Notice that ~ is defined on the 1- telation associated to J(cr) which not is necessarelly
reflexive and we not include the traditional rules for the equality (reflexivity, simmetry
and transitivity), because it can be derived from this rules.

We must introduce several logical axioms and rules in order to construct types. But,
because they are not so fundamental to our theory and, since they can be found in
[Abr91, BA95], we are omitting them.

In the particular case of the type Y, the consequence relation on In_ A when extended . ,
using the logical axioms and logical rules, .above, will satisfy sorne interesting properties,
which can be see as axioms and rules to the real interval data type.

Axioms and Rules for the Interval Real Type

-~-------------- --------------~-------·--------- b<c
(Rt) (Rf)

t = [-oo, +oo] f = [a, b] !\ [e, d]

(RA¡)
[e, b] >> [a, d]

(R/\2)
[a, d] >> [e, b]

[a, b] !\ [e, d] = [e, b] [a, b] !\ [e, d] = [a, d]

(Rv¡)
[e, b] ~ [a, d]

(RV2)
[a, d] ~ [e, b]

[a, b] V [e, d] = [a, d] [a, b] V [e, d] = [e, b]

(RMon)
[a, b] ~ [e, d]

(R®)
[a, b] ® [p, q] ~ [e, d] ® [p, q] [a, b] ®[e, d] =[minA, max A]

(R/¡) (R/2) fe, dl !\ [-1, O]= f
[a, b]/ e, d = [min B, max B]'

where A= {a® e, a® d, b ®e, b ® d} and B = {a/e,afd, b/e, b/d}.

6 Soundness and completeness

The classical Stone representation theorem for Boolean algebras is the prototype for a
wide class of "Stone-type duality Theorems" [Joh82, Abr91, AJ94]. The general form
of those theorems is to assert an equivalence between a category of topological spaces
and (the opposite of) a category of lattices and lattices morphisms. The importance of
the Stone duality theorems for computer science rests on the fact that it provides the
right framework for understanding the relationship between denotational semantics and
program logic.

--------~--~~------------ 667

XXV Conferencia Latinoamericana de Informática----------~---~-- Asunción-Paraguay

In our case, for a type a, the Lindenbaum algebra of (Lu, ~), defined as LA(a) =
(Lu/ =, C / =)4, is a completely distributive lattice and, therefore, has as Stone dual the
Scott topology of a continuous cpo.

Theorem 6.1 (Stone Du.ality) LA(a) is the Stone dual of J J(a) J, i.e.,

1. 1 I(a) lrv SpecLA(a)5

2. Ds(II(a) 1) "'LA(a).•

In other words, this theorem shows that the program logic is equivalent to the usual
denotational construction of domains. In this way, a proof of this theorem (part 2) must
provide an interpretation function for each (dosed) type expression a. We propose the
following

[]u : Lu --+ Ds(l I(a) 1)

e [a] =f{ a}, for each a E fu ~ [cp 1\ '1/J] = [cp] n ['1/J]

~ [f] = 0 ~ [cp V '1/J] = [cp] U ['1/J]

e [t] =l0 =1 S(a) 1

Let <p, '1/J E Cu. If V fx ~ [cp], :3 fy ~ ['1/J], such that y ~~(u~ x, we denote it by
F= <p~ '1/J.

Theorem 6.2 (Soundness and Completeness) Let CJ be a type and <p, 'ljJ E. Lu. We
have the following

f- <p ~ 'ljJ if, and only if, f= <p >> '1/J .11!1!

7 A pplication to interval constraint satisfaction pro b­
lems

The extended continuous domain logic can be useful to solve a kind of interval constraint
satisfaction problem. The idea is to decompose the constraint ,equations up to for:m.
only equations with a unique arithmetic operator (sometimes this process requires the
introduction of auxilary variables). These new equations are called solution functions
[Hyv92]. So, we must consider each tolerance interval constraint and solution functions
as hypothesis. These hypothesis are used in the deductions of our proof system to find

4 Here / = denotes module=
5Given a completely distributive lattice, SpecA, the spectrum of the lattice A, is the space of aH

prime elements p f. t of A endowed with the hull-kernel topology [GHK+so].

668

XXV Conferencia Latinoamericana de Informática -------~--------- Asunción-Paraguay

the minimal interval (the most refined) taken by the variables such that they continuate
satisfying the set of equations.

Consider the conversion from Celsius (C) degrees to Fahrenheit (F) degrees, described
by the following equation:

F = 1.8. e+ 32 (1)

If C (input) is known, then F (output) can be computed by combining two local
computations X = 1.8 ·e and F = X+ 32. By applying the inverse local function
X = F- 32 and C = X/1.8 we can compute e from F. An example of ICSP is to
obtain the minimal interval values of e with F satisfying the above equation and such
that refines the initial interval temperature measurements e= [1, 5] and F = [27, 35].

In the (local) tolerance propagation method [Hyv92] this is solved via a procedure
which starts with the values for the variables e := [1, 5], X := [-oo, +oo] and F :=

[27, 35]. These val u es correspond to the tolerance constraints of the variable val u es. Prod­
uct of decornpositions of the original equation will give two equations constraints and four
solution functions corresponding to these constraints.

constraints solution functions
(C1) C · 1.8 =:X- (El) X= 1.8 · C, (E2) C= X/1.8
(e2)X+32=F (E3) F=X+32,(E4) X=F-32

The initial solution functions agenda of this network is, for example, X = 1.8 · e,
X = F - 32, e = X /1.8 and F = X + 32. In this cases, the values 1.8 and 32 are
abreviations of the degenerate intervals [1.8, 1.8] and [32, 32]. The final values for the
variables after the tolerance propagation algorithm in [Hyv92] with this agenda is applied
are: e:= [1, 1.6], X:= (1.8, 3] and F := (33.8, 35].

In order to obtain these values, in our proofsystem, we extend the.language to Cu(V),
where V= {F, e, X}. For that we have to introduce as hypothesis the interval constraint
tolerance e» [1, 5], X» t, F >> (27, 35).

(D1)Deduction of the auxiliar variable X value.

() ~(Hyp) (R) (E4) F::!>[27,351(Hyp) (R®)
X» LB· e El Ls.c»tLs,9] ® (trans 1) X»F 32 F a2»(s,3] (trans 1)

X~[l.8,9) X~[-5,3) (1\ _ »)
X»[l.8, 9]/\ [-5, 3]

Our deduction continuates in the following proof tree

=-->~--.---:::_,_,D 1 (1?../\)
x~[l.8,9)/\[-5,3) [1.8,9]/\[-5,3)=[1.8,3] (trans3)

X»[l.8, 3]

(D2) Deduction for obtaining the value of the variable e

() X» 1 8 3 (Dl) (R_)
-;:::c~::::-~=x¡=¡-:::.8 E2 X/LB;[l,l.6 ® (transl)

e>>[l, 1.6]

XXV Conferencia Latinoamericana de Informática ---------~-------- Asunción-Paraguay

(D3) Deduction of the variable F value.

(E3) X;>[l 8 3] (DI} (R®)
=p~::-~X~+3~2 X+32~f33.8,35] ··(t l)

F»[33.8, 35] rans

In our next example, the goal is to solve, in ou.r proof system, a project problem. The
task is to alocate the work time of n researchers to m projects. For example, consider
three researchers, a, b, and e, with capacity of work hours A, B and e, respectively.
These researchers must be alocated to the projects p1 , p2 and p3 which require resources
of P1 , P2 and P3 hours, respectively. Let ap be a variable denoting the work time of the
researcher a spended in the project p. The equations of this ICSP are as follows [Hyv92J:

• El) A + B + e = P1 + P2 + Pa
* E2) T = Pl + P2 + P3

" E5) Pa = apa + bpa +epa
• E6) A = ap¡ + ap2 + apa
~ E7) B = bp¡ + bp2 + bpa
~ E8) e = ep¡ + ep2 + epa

~ E3) P1 = ap1 + bp1 + ep1

$ E4) P2 = ap2 + bp2 + ep2

A possible set of tolerance constraints to the variables are: ap1 = [120, 160), bp1 =
[0, 160] and ep1 = [0, 160]. The remains are assumed to have no constraints. In the
following is presented a proof tree to determina te the hours consumed by the project P1 ,

satisfying these constraints.

ap¡ »[120,160) (Hyp) bp¡ »[0,160] (Hyp) R
(E3) ap¡+bp¡»[120,a2o] (®) cp1»[o,l6o](Hyp) (R®)

_P~1 =_a~p~1 +~b~p~1 +~c~p~1 ----------------~~~1~+~ap~2~+~ap~a=~~[1_2~0,~4B_O~]---------------(trans2)
P1>>[120, 480]

If the tolerance constraints are inconsistent, we can only deduce on the proof system
the interval [-oo, +oo]. For example, if the tolerance constraints are T = [O, 160), P1 =
[120, 160], P2 = [0, 160] and P3 = [100, 160], then we have the following deduction:

P¡ »(120,160) (Hyp) P2»(0,160J (Hyp)
P +P »[120,320] (R®) P » 100 160 (Hyp)

P¡ +P2+Pa» 220,480 ' (R®) T P1 +Pz+P3 (E2)
T»[220,480] (Trans2) T»[O,l60] (Hyp) (/\ _ »)

---------------------------T=~~[2_2~0,4_8~0]~A~[O~,l-60~]--------------------------------(nf)
T»f

8 Conclusion

In this paper we us the continuous domain logic introduced by [BA95], in order to develop
a program logic for interval analysis. This program logic agree with the denotational
semantics in the sense that the denotation of any program coincides with the set of true
assertions of it. So, we provide a behaviour study of interval programming languages. On
the other hand, we can use this logic to perform interval deductions. In this sense we
incorporate in the domain logic the interval data type T as primitive. Since the interval

670

XXV Conferencia Latinoamericana de lnfoniuítica ----------------- Asunción~ Paraguay

arithmetic is fundamental to the !nterval analysis, we have included it in the proper
definition of their continuous. information system and associate it to type T. Clearly,
both continuous information systems given by the real interval domain are isomorphics.
We believe that the extended domain logic presented here, denominated interval domain
logic, allows us to solve a large class ofproblems in interval analysis, such as linear systems,
ICSP, etc.

In particular, in our logic we give two examples of deductions, which allow us to solve
two ICSPs. Because the estrategy used to find the proof tree is similar to local tolerance
propagation techniques, we believe that this kind of deduction can be applied to all ICPS
which can be solved by this method. We are not saying of course ~ have provided a
formal method to solve any ICSP. In fact in this work we have only solved simple ICSP's.
The way how we ha ve found solutions in interval constraint systems is general (at IIiost
to local propagation techniques) and computable. So, we hope our approach can be
implemented in automatic theorem proof on interval domain logic to solve a large class
ofiCSP.

References

[Abr91]

[Aci91]

[Aci96]

[AJ94]

[BA95]

[Bed96]

Samson Abramsky. Domain Theory in Logic Form. In Annals of Pure and
Applied Logic, 51:1-77, 1991.

Benedito Melo Acióly. Computational Foundation of Interval Mathematics (in
portuguese). PhD thesis, CPGCC da UFRGS, Porto Alegre, 1991.

Benedito Melo Acióly. The Scott Interval Analysis. In 11 workshop of Arith­
metic, Interval and Symbolic Computations- WAI96. Recife, august of 1996.
pages 4-6.

Samson Abramsky and Achim Jung. Domain Theory. In Handbook of Logic in
Computer Science, Vol. 3, Oxford university Press., 1994.

Benjamín R. Callejas Bedregal and Benedito Melo Acióly. Logi.c of Plotkin
Continuous Domain. In LNCS 911, pages 195-206, Springer-Verlag, 1995.

Benjamín R. Callejas Bedregal. Continuous Information Systems: A Compu­
tational and Logical Approach to Interval Mathematics (in portuguese). PhD
thesis, UFPE-Depto. de Informática, Recife, 1996.

[GHK+8o] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D. Scott.
A Compemdium of Continuous Lattices. Springer-Verlag, Berlim, 1980.

[Gun85] CarlA. Gunter. Comparing categories of domains. In LNCS 239, pages 101-121.
Springer-Verlag, 1985.

XXV Conferencia Latinoamericana de Informática --------~----~--- Asunción-Paraguay

[Hoo:J.:S] R. Hoofman. Continuous Information Systems. Information and Computation,
105(1):42-71, 1993.

[Hyv92] Eero Hyvonen. Constraint Reasoning Based on Interval Arithemetic: The tol­
erance propagation approach. In Artificial Intelligence, 58{1-3):71-112, North­
Holland, 1992.

[Joh82) Peter T. Johnstone. Stone Space. Vol. 3 of Cambridge Studies in Dvances Math­
ematics. Cambridge University Press., Cambridge-UK, 1982.

[Mac92) Alan K. Mackworth. The Logic of Constraint Satisfaction. In Artificial Intelli­
gence, 58(1-3):3-20, North-Holland, 1992.

[Moo66] Ramon E. Moore. Interval Analysis. Englewoods Cliffs: Prentice Hall, 1966.

[Sco72) Dana Scott. Continuous Lattices. Lectures Notes in Mathematics, 274, pages
97-136, Springer-V.erlag, 1972.

[Sco82) Dana Scott. Domain for denotational semantics. In LNCS, 140, Springer­
Verlag, 1982.

[Vic89] S.J. Vickers. Topology via Logic. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press., Cambridge-UK, 1989.

672

