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Abst:ract 

Domain Logic (algebraic) was introduzed by Abramsky [Abr91) in order to study 
the logical aspects (a proof system) of domains as used in the denotational semantics 
of programming languages. Thus, we present denotational semantics as a program 
logic. In (BA95] the Abramsky approach to domain logic was extended, interpreting 
types as continuous domains instead of algebraic domains. 

In this work we extend the continuous domain logic incorporing the interval data 
type as primitive type and adding variables, interval arithmetic, axioms and rules 
to the interval data type. Its allows us, for exarnple, to solve Interval Constraint 
Satisfaction Problems as deduction in our logic. 

Keywords: Domain Theory, Reals Interval, Domain Logic, Interval Constraint Satisfac­
tion Problems. 
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1 Introduction 

The (algebraic) domain logic was introduzed by Abramsky (Abr91] in order to study 
the logical aspects (a proof system) of domains as used in the denotational semantics 
of programming lánguages. However, algebraic domains does not support a natural and 
topologically consistent interpretation of the real interval data type. Nevertheless, con-· 
tinuous domains have a desirable interpretation for this data type. 

Analogously to the work of Scott (Sco82] to represent concretely algebraic domains, 
Hoofman in (Hoo93] introduzed the alternative description of continuous information sys­
tems, CIS in short, to continuous domains. This representation makes explicit the idea of 
information, in the sense that each element of a domain is seen as a collection of informa­
tions that it "satisfies". Even though both notions are equivalent, categorically speaking, 
informatíon systems allow us to capture the logical aspects of domains, in the sense that 
properties of domains can be derived from assumptions about the entailment between 
propositions expressing properties of computations. Thus, for example, the continuous 
domain of real interval is represented as a continuous information system whose basic 
informations are rational intervals. 

In (BA95] the Abramsky approach to domain logic (Abr91] was extended interpreting 
types as continuous information systems instead of algebraic domains. 

In this work, we will extend the typed languages introducing a distinguished type for 
representing the interval data type as well as formation rules for the interval arithmetic. 
We extend the proof system with news axioms and rules for interval deductions based on 
the interval arithmetic. This extended domain logic is called here interval domain logic. 
A goal of this extension is to allow interval deductions which can be used, for ~xample, to 
solve sorne interval contraint satisfaction problems, ICSP in short. An approchs to solving 
ICSP's is the (Local) Tolerance Propagation (Mac92]. Using the agenda defined by this 
method we find, via deductions in the proof system, the minimal consistent subinterval 
which can have the variables satisfying the equations of the interval constraint system. 
This method used to find solutions of ICSP's can be implement as an automatic theorem 
pro o f. 

2 Continuous domains 

Several mathematical structures have been widely employs as models for denotational 
semantics of programming language since the seminal work of Scott and Strachey. One of 
them is the continuous domains, i.e. posets such that each chain and each consistent set 
has a supremum, with a least element and a countable base, i.e. basically, a continuous 
lattice (Sco72] minus, possibly, the top element (Aci96]. The morphisms between contin­
uous domains, called continuous functions, are the monotonic functions w.r.t. the arder 
associated to domains preserving supremum of chains. Continuous domain allows us to 
develop a theory of interval arithmetic and numerical analysis (Aci91]. This theory has 
the advantage of being constructive and computational,' besides of unifying the theory of 
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programming languages semantics a;nd computational mathematics (numerical analysis). 
It provides usa logic (Scott logic) to reason about programs in nuinerical analysis. 

Let D = (D, ::;) be a partially ordered set (poset). A set 4 ~ D is called directed 
if e~ch finite subset has an upper bound, or equivalently, Va, b ·E .6. 3c E .6. such that 
a ::; e and b ::; c. A poset D is· complete (for·short cpo) if each directed set .6. has a 1east 
upper bound (denoted by U .6.) and has a bottom element. We say that a is way below 
b ( denotecl by a ~ b) if for every directed set .Ó. SUCh that b ::; U .Ó. then a ::; X for sorne 
X E .6.. 

We let ix = {y E D : y ~ x P. A cpo D is called continuous if, for a:U x E D, the set 
ix is directed and x =U ix. A continuous cpo D such that to each consistent set (a set 
has an upper bound in D) has a supremum in D is called contiriuous doma in. 

The interval data type, denoted here by T, will be interpreted by the continuous 
domain R = (ll(IR), ~' [-oo, +oo]) where ll(IR) = {[r, s] : r, sE IR and r ::; s} U {[-oo, +oo]} 
and [r, s] ~ [t, u] iff r ::; t and u < s. Notice that [a, b] ~ [e, d] if, and only if, a < e and 
d> b. . 

A topology on a set X is a collection of subsets of X that is closed under finite inter­
section and arbitrary union. A set X together with a topology Ton X is a topological 
space denoted by (X, 7). The elements of í are the open sets of the space. Notice that 
the emptyset CmmU 0fancrx itself (n 0) are open in any topology over X . -m 

Now let (X,~) be a continuous domain. O ~X is said to be Scott open if whenever 
x E O and x ~y then y E O and if S~ X is directed and Sup S E O then there exists 
s E S such that s E O. The set of Scott open set (the Scott topology) of a continuous 
domain D is denoted by ns (D). 

3 Continuous information systems 

Continuous domains have a more concrete and logic representation as continuous infor­
mation systems, CIS in short. A CIS can be viewed as prescription or program saying 
how to build a domain. 

Definition 3.1 [Hoo93] A continuous information system is a triple I = (J, Con, 1-), 
where I is a non empty countable information set, Con is a non empty subset oJPfin(I) 
(finite parts of I), named consistency predicate, and 1- is a subset of Con x I, named 
entailment relation such that 

I If X E Con and Y ~ X then Y E Con 

II If a E I then, {a} E Con 

III If X 1- a then, X U {a} E Con 

IV If Y ~ X, X E Con and Y 1- a then, X 1- a 

.1 Analogously, we let tx = {y E D : x « y} 
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V If X 1- Y2 and Y 1- a then, X 1- a 

VI If X 1- a then 3Y E.Con such that X 1- Y and Yl- a 

A CIS informs on the elements of a domain which may be identified with the set of 
information in the system which are satisfied by these elements. 

Definition 3.2 [Hoo93] Let I = (J, Con, 1-) be a GIS. The set x ~ I is an element of 
I if the the following conditions are satisfies: 

1. If X ~fin x3 then, X E Con 

2. If X ~ x and X 1- a then, a E x. 

3. lf a E x then ::JY ~fin x such that Y 1- a. 

The set of elements of a CIS I = (I, Con, 1-) is denoted by III and the poset (III, ~) 
is called domain of elements of the CIS I. 

Theorem 3.3 [Hoo93] Let I = (I, Con, 1-) be a GIS. Then (1 I 1, ~) is a continuous 
domain. 11 

There are technical advantages to working with CIS rather than directly with con­
tinuous domains. First CIS uses the set theory languages and second the properties of 
domains can be derived rather than postulated. 

We are mainly interested in continuous information systern, which are appropriated 
for representing the real nurnber data type. Each rational interval is interpreted as an 
information about the real numbers that it properly contains. A CIS for the real numbers 
is the triple 

In= (rr(Q>), Conn, 1-n) where 

l. rr(Q>) ={[a, b] : a, bE Q> anda:::; b} U {[-oo, +oo]} 

2. X E Conn iff X ~fin rr(Q>) and max1(X) < minr(X) 

3. X 1-n [a, b] iff a< max¡(X) e minr(X) < b. 

with max1(X) = max{ a : ::lb E Q> U { +oo }, [a, b] E X}, minr(X) = min{b : ::la E 
Q> U { ~oo }, [a, b] E X}. The domain of element of the CIS In is "isomorphic" to the 
continuous domain (rr(JR), ~), where rr(JR) = {[r, s]: r, sE lR and r:::; s}U{[-oo, +oo]} and 
[r, s] e [t, u] if, and only if, r :::; t and u :::; s [Bed96]. In the follows we will incorporate the 
interval arithmetics operators in the basic inforrnation, i.e. we will consider informations 
of teh kind [3, 4] + [2, 3] as an information to real number 1r +e, for example. Its extension 

2The notation X 1- Y is a shorthand f<;>r Va E Y, X 1- a. 
3 X e; fin Y is an abreviation for "X e; Y and X is finite". 
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will be useful to obtain a logical ~ystem of partial information on the real data type, 
which allows us to have interessant deduction in the interval theory involving the interval 
arithmetics. 

l. In,A is obtain recursively from the follows formation rules 

[a, b] E II(lQ) 
[a, b] E ln,A 

1, J E In,A 

(I + J) E~ln,A 

2. X E Conn,A iff eval(X) E Conn 

1,1 E ln,A 

(I- J) E ln,A 

where eval : In,A--+ II(lQ) is a function defined by 

eval([a, b]) = [a, b] 

eval((I + J)) = eval(I) + eval(J) 

eval ( (I -=-f)) = eval (I) - eval ( J) 

eval(I · J)) = eval(I) · eval(J) 

eval( (I l J)) _ { eval(I)Ieval(J) 
- t 

1,1 E lnA 
' , 

(! · J) E ln,A 

ifO ~ J 
otherwise 

l,J E ln,A 

(I / J) E l'R,A 

The operator +, -, · and 1 are the usual interval arithmetic operators [Moo66]. 

3. X f--n,A I iff eval(X) f--n eval(I). 

4 Typed language and formation rules 

In this section, we shall introduce a metalanguage for denotational semantics of programs, 
whose language of the typed expressions has the following syntax: 

a ::= 1 1 l' 1 a x r 1 a--+ r 1 u ffi r 1 &t 1 uH 1 u 8 1 rec.t.(1 

where t is a variable type, and (1 and r are any types, the type 1 consist of a unique 
elernent and Y is the interval type. The product ( x), function space (--+), collapsed sum 
( EB), lifting ( t), the Hoare powerdomain ( H) and Smyth powerdomain ( 8) are the usual 
constructora of domains [Sco82]. To each type a we associate a CIS I(a) = (Iu, Conu, f-u)· 
For example, I(T) = In,A. 

By using the above metalanguage we can provide a denotational sema:ntics for a large 
class of programming languages. Each programmi:ng language L is specified by a typed 
expression a and each program in it is denoted by an element of I(a). We are not 
concerned in how we select a typed expression for a particular programming la:nguage. 
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For each type a we introduce a propositional language .C,n the language of finitely 
observable informations, whose atomical formulae are Iu and the canonical information t 
( true) and f (false). 

l. If a E Iu, then a E Cu. 

2. If a, b E .Cu, then a 1\ b E Cu. 

Clearly, each language Cu can be extend with a countable set of variables X, denoted 
by Cu(X). 

Formation Rule 

(t, f) t:"(1 r:a (/\) cp_¡ '!P : a (V) 'P_1 2 'P_2 2 • • • : a 
r.p 1\ ,P : a V 'Pi : a 

(-+) r=T (0, 'lj; :a-+ T 
cp_:a Y!_:T 

({r.p},'I/J): a-+ T (x) <p_:a Y!_:T 
(r.p,'I/J): a X T (rec) r.p : a[rec X.a LX] 

r.p : rec X.a 

(o_¡_) p_:a 
(2,r.p):a_¡_ (l,l):a_¡_ (D) p_:a 

Dr.p : a8 
(O) p_:a 

Or.p:aH 

5 Proof system 

In order to give axioms in the program logic, we will introduce a relations for every type 
a. By r.p ~· 'lj;, we mean that the information r.p derives the information '1/J. So, ~ is an 
entailmen~ relation or a strong order, also know as "way-below" relation, in an inverse 
sense. 

For notational simplicity, we will eliminate subscripts if no confusion arise and we will 
use binary disjunction instead of the arbitrary disjunctions. We will introduce for each 
type the relation ~ on their informations, which indicates the logic derivation. 

Logical Axioms and Logical Rules 

(t) (f) (1->>) 
X f- b 

r.p~t f >> r.p 1\X~b 

(I~) ['1/J ~el>] (V->>) P..l >> Y!.. 'P_2 ~ '1/J 
'PI V 'P2 ~ 'ífj 

(/\- ~) cp_~Y!_ cp_~p_ 
r.p~'ífj/\(jj 

r.p~cp 

r.p>'lj; 
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(Transl) <p ~ P ~ ~ P (Trans2) 
<p~ 

<p > P P >> P (Trans3) 
<p~qJ 

(Inter) 
<p~'I/J 

<p >> <P 
for sorne <P >> '1/J (I=) 

Notice that ~ is defined on the 1- telation associated to J(cr) which not is necessarelly 
reflexive and we not include the traditional rules for the equality (reflexivity, simmetry 
and transitivity), because it can be derived from this rules. 

We must introduce several logical axioms and rules in order to construct types. But, 
because they are not so fundamental to our theory and, since they can be found in 
[Abr91, BA95], we are omitting them. 

In the particular case of the type Y, the consequence relation on In_ A when extended . , 
using the logical axioms and logical rules, .above, will satisfy sorne interesting properties, 
which can be see as axioms and rules to the real interval data type. 

Axioms and Rules for the Interval Real Type 

-~-------------- --------------~-------·--------- b<c 
(Rt) (Rf) 

t = [-oo, +oo] f = [a, b] !\ [e, d] 

(RA¡) 
[e, b] >> [a, d] 

(R/\2) 
[a, d] >> [e, b] 

[a, b] !\ [e, d] = [e, b] [a, b] !\ [e, d] = [a, d] 

(Rv¡) 
[e, b] ~ [a, d] 

(RV2) 
[a, d] ~ [e, b] 

[a, b] V [e, d] = [a, d] [a, b] V [e, d] = [e, b] 

(RMon) 
[a, b] ~ [e, d] 

(R®) 
[a, b] ® [p, q] ~ [e, d] ® [p, q] [a, b] ®[e, d] =[minA, max A] 

(R/¡) (R/2) fe, dl !\ [-1, O]= f 
[a, b]/ e, d = [min B, max B]' 

where A= {a® e, a® d, b ®e, b ® d} and B = {a/e,afd, b/e, b/d}. 

6 Soundness and completeness 

The classical Stone representation theorem for Boolean algebras is the prototype for a 
wide class of "Stone-type duality Theorems" [Joh82, Abr91, AJ94]. The general form 
of those theorems is to assert an equivalence between a category of topological spaces 
and ( the opposite of) a category of lattices and lattices morphisms. The importance of 
the Stone duality theorems for computer science rests on the fact that it provides the 
right framework for understanding the relationship between denotational semantics and 
program logic. 
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In our case, for a type a, the Lindenbaum algebra of (Lu, ~), defined as LA(a) = 
(Lu/ =, C / =)4, is a completely distributive lattice and, therefore, has as Stone dual the 
Scott topology of a continuous cpo. 

Theorem 6.1 (Stone Du.ality) LA( a) is the Stone dual of J J(a) J, i.e., 

1. 1 I(a) lrv SpecLA(a)5 

2. Ds(II(a) 1) "'LA(a).• 

In other words, this theorem shows that the program logic is equivalent to the usual 
denotational construction of domains. In this way, a proof of this theorem (part 2) must 
provide an interpretation function for each (dosed) type expression a. We propose the 
following 

[ ]u : Lu --+ Ds(l I(a) 1) 

e [a] =f{ a}, for each a E fu ~ [cp 1\ '1/J] = [cp] n ['1/J] 

~ [f] = 0 ~ [cp V '1/J] = [cp] U ['1/J] 

e [t] =l0 =1 S(a) 1 

Let <p, '1/J E Cu. If V fx ~ [cp], :3 fy ~ ['1/J], such that y ~~(u~ x, we denote it by 
F= <p~ '1/J. 

Theorem 6.2 (Soundness and Completeness) Let CJ be a type and <p, 'ljJ E. Lu. We 
have the following 

f- <p ~ 'ljJ if, and only if, f= <p >> '1/J .11!1! 

7 A pplication to interval constraint satisfaction pro b­
lems 

The extended continuous domain logic can be useful to solve a kind of interval constraint 
satisfaction problem. The idea is to decompose the constraint ,equations up to for:m. 
only equations with a unique arithmetic operator (sometimes this process requires the 
introduction of auxilary variables). These new equations are called solution functions 
[Hyv92]. So, we must consider each tolerance interval constraint and solution functions 
as hypothesis. These hypothesis are used in the deductions of our proof system to find 

4 Here / = denotes module= 
5Given a completely distributive lattice, SpecA, the spectrum of the lattice A, is the space of aH 

prime elements p f. t of A endowed with the hull-kernel topology [GHK+so]. 
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the minimal interval (the most refined) taken by the variables such that they continuate 
satisfying the set of equations. 

Consider the conversion from Celsius ( C) degrees to Fahrenheit (F) degrees, described 
by the following equation: 

F = 1.8. e+ 32 (1) 

If C (input) is known, then F (output) can be computed by combining two local 
computations X = 1.8 ·e and F = X+ 32. By applying the inverse local function 
X = F- 32 and C = X/1.8 we can compute e from F. An example of ICSP is to 
obtain the minimal interval values of e with F satisfying the above equation and such 
that refines the initial interval temperature measurements e= [1, 5] and F = [27, 35]. 

In the (local) tolerance propagation method [Hyv92] this is solved via a procedure 
which starts with the values for the variables e := [1, 5], X := [-oo, +oo] and F := 

[27, 35]. These val u es correspond to the tolerance constraints of the variable val u es. Prod­
uct of decornpositions of the original equation will give two equations constraints and four 
solution functions corresponding to these constraints. 

constraints solution functions 
(C1) C · 1.8 =:X- (El) X= 1.8 · C, (E2) C= X/1.8 
(e2)X+32=F (E3) F=X+32,(E4) X=F-32 

The initial solution functions agenda of this network is, for example, X = 1.8 · e, 
X = F - 32, e = X /1.8 and F = X + 32. In this cases, the values 1.8 and 32 are 
abreviations of the degenerate intervals [1.8, 1.8] and [32, 32]. The final values for the 
variables after the tolerance propagation algorithm in [Hyv92] with this agenda is applied 
are: e:= [1, 1.6], X:= (1.8, 3] and F := (33.8, 35]. 

In order to obtain these values, in our proofsystem, we extend the.language to Cu(V), 
where V= {F, e, X}. For that we have to introduce as hypothesis the interval constraint 
tolerance e» [1, 5], X» t, F >> (27, 35). 

(D1)Deduction of the auxiliar variable X value. 

( ) ~(Hyp) (R ) (E4) F::!>[27,351(Hyp) (R®) 
X» LB· e El Ls.c»tLs,9] ® ( trans 1) X»F 32 F a2»( s,3] ( trans 1) 

X~[l.8,9) X~[-5,3) (1\ _ ») 
X»[l.8, 9]/\ [ -5, 3] 

Our deduction continuates in the following proof tree 

=-->~--.---:::_,_,D 1 (1?../\) 
x~[l.8,9)/\[-5,3) [1.8,9]/\[-5,3)=[1.8,3] ( trans3) 

X»[l.8, 3] 

(D2) Deduction for obtaining the value of the variable e 

( ) X» 1 8 3 (Dl) (R_ ) 
-;:::c~::::-~=x¡=¡-:::.8 E2 X/LB;[l,l.6 ® (transl) 

e>>[l, 1.6] 
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(D3) Deduction of the variable F value. 

(E3) X;>[l 8 3] (DI} (R®) 
=p~::-~X~+3~2 X+32~f33.8,35] ··(t l) 

F»[33.8, 35] rans 

In our next example, the goal is to solve, in ou.r proof system, a project problem. The 
task is to alocate the work time of n researchers to m projects. For example, consider 
three researchers, a, b, and e, with capacity of work hours A, B and e, respectively. 
These researchers must be alocated to the projects p1 , p2 and p3 which require resources 
of P1 , P2 and P3 hours, respectively. Let ap be a variable denoting the work time of the 
researcher a spended in the project p. The equations of this ICSP are as follows [Hyv92J: 

• El) A + B + e = P1 + P2 + Pa 
* E2) T = Pl + P2 + P3 

" E5) Pa = apa + bpa +epa 
• E6) A = ap¡ + ap2 + apa 
~ E7) B = bp¡ + bp2 + bpa 
~ E8) e = ep¡ + ep2 + epa 

~ E3) P1 = ap1 + bp1 + ep1 

$ E4) P2 = ap2 + bp2 + ep2 

A possible set of tolerance constraints to the variables are: ap1 = [120, 160), bp1 = 
[0, 160] and ep1 = [0, 160]. The remains are assumed to have no constraints. In the 
following is presented a proof tree to determina te the hours consumed by the project P1 , 

satisfying these constraints. 

ap¡ »[120,160) (Hyp) bp¡ »[0,160] (Hyp) R 
(E3) ap¡+bp¡»[120,a2o] ( ®) cp1»[o,l6o](Hyp) (R®) 

_P~1 =_a~p~1 +~b~p~1 +~c~p~1 ----------------~~~1~+~ap~2~+~ap~a=~~[1_2~0,~4B_O~]---------------(trans2) 
P1>>[120, 480] 

If the tolerance constraints are inconsistent, we can only deduce on the proof system 
the interval [-oo, +oo]. For example, if the tolerance constraints are T = [O, 160), P1 = 
[120, 160], P2 = [0, 160] and P3 = [100, 160], then we have the following deduction: 

P¡ »(120,160) (Hyp) P2»(0,160J (Hyp) 
P +P »[120,320] (R®) P » 100 160 (Hyp) 

P¡ +P2+Pa» 220,480 ' (R®) T P1 +Pz+P3 (E2) 
T»[220,480] (Trans2) T»[O,l60] (Hyp) (/\ _ ») 

---------------------------T=~~[2_2~0,4_8~0]~A~[O~,l-60~]--------------------------------(nf) 
T»f 

8 Conclusion 

In this paper we us the continuous domain logic introduced by [BA95], in order to develop 
a program logic for interval analysis. This program logic agree with the denotational 
semantics in the sense that the denotation of any program coincides with the set of true 
assertions of it. So, we provide a behaviour study of interval programming languages. On 
the other hand, we can use this logic to perform interval deductions. In this sense we 
incorporate in the domain logic the interval data type T as primitive. Since the interval 
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arithmetic is fundamental to the !nterval analysis, we have included it in the proper 
definition of their continuous. information system and associate it to type T. Clearly, 
both continuous information systems given by the real interval domain are isomorphics. 
We believe that the extended domain logic presented here, denominated interval domain 
logic, allows us to solve a large class ofproblems in interval analysis, such as linear systems, 
ICSP, etc. 

In particular, in our logic we give two examples of deductions, which allow us to solve 
two ICSPs. Because the estrategy used to find the proof tree is similar to local tolerance 
propagation techniques, we believe that this kind of deduction can be applied to all ICPS 
which can be solved by this method. We are not saying of course ~ have provided a 
formal method to solve any ICSP. In fact in this work we have only solved simple ICSP's. 
The way how we ha ve found solutions in interval constraint systems is general ( at IIiost 
to local propagation techniques) and computable. So, we hope our approach can be 
implemented in automatic theorem proof on interval domain logic to solve a large class 
ofiCSP. 
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